Virtual Parallel Platform for
performance Estimation

VIPPE vs GEM5
Comparison

September, 2020

uc Micro-electronic Engineering Group
el TEISA Department
University of Cantabria
http://vippe.teisa.unican.es

VIPPE is a complex tool infrastructure which integrates several techniques and parts.
The integration of these techniques and development of these parts has been
development across several projects by the Spanish Government and the EU
Commission through several research programs.

* ¥ %
OBIERNO « *
-’ DEESPANA OEECONON\A * *
*

IPT-2012-0847-430000

E§§ P o |\7/’ HARP))::>:<(<CRAFTERS Gonirex

ART-010000-2012-5

http://vippe.teisa.unican.es/

VIPPE vs GEM5

Index
L INEFOTUCTION Lottt 3
11 WHRhAE'S VIPPE? ..o 3
1.2 WRAE’S GEIMS? ...ttt e st bt e s bt e e e e s s bb e e e et b et e e sabe e e e s bb e e e eabbeeeennbeeaesbbeeas 4
13 BENCIIMAIKS TESTS. ...ttt bbb bbb bt bbbttt b e 4
2 ARM BENCNMAIKS ... 5
21 ARM SImMUIALEA MOUE ..ottt bbbt er s 5
2.2 ADOUL GEMS TESE FOF ARM ...ttt bbbttt eees 5
2.3 ADOUL VIPPE TSt FOr ARM ...oiiiiiiiiiieiii ettt bbbttt 6
24 SOFtING BENCHMAIKS ..ottt bbbttt et sn e ere s 6
25 Complex Algorithms BENCNMAIKScccviiicice et 11
3 RISC-V BENCNMAIKS ..o 16
3.1 RISC-V SIiMUIAted MOGELccooiiiiiiiiee e 16
3.2 ADOUL GEMS TESE FOI RISC-V ..o 16
3.3 ADOUL VIPPE TSt FOr RISC-V .. bbb bbbt 17
34 SOtiNG BENCNMAIKSot e s e e te e be et e esbesreestaesteesteeneens 17
35 Complex Algorithms BENCNMAIKSccviiiiici et 22
4 CONCIUSIONS e 27

D R B BIBN C S . e e 28

VIPPE vs GEM5

1 Introduction

1.1 What’s Vippe?

VIPPE is a tool infrastructure for simulation and performance estimation of complex,
heterogeneous MPSoC. VIPPE allows the designer to simulate and application composed of different
pieces of functionality (written in C or C++) according to a model of the target platform and of how
the application functionality is mapped on such platform.

) Model Driven Front-ends
This Document PIM Code | — U L@
M~ARTE

&

Application Code
C/C++

Automated
Code
Annotation

vippe-llvmcc
vippe-llvm++

Algorithm
Refinement

r

Platform Model
Mapping HW-SW

Functional
Bug
Fixing

Platform
Selection

Exploration
Tools

Functional bugs

[Simulation Results W

JPer‘formance Issues

Figure 1. VIPPE enables fast functional and performance assessment of the application targeted to a

specific platform.

VIPPE vs GEM5

1.2 What’s Gem5?

GEMS is a modular discrete event driven computer system simulator platform. That means:

1. gem5’s components can be rearranged, parameterized, extended or replaced to suit our needs.

2. It simulates the passing of time as a series of discrete events.

3. Its intended use is to simulate one or more computer systems in various ways.

4. It’s more than just a simulator; it’s a simulator platform that lets you use as many of its premade
components as you want to build up your own simulation system.

GEMS is written primarily in C++ and python and most components are provided under a BSD style
license. It can simulate a complete system with devices and an operating system in full system mode
(FS mode), or user space only programs where system services are provided directly by the simulator
in syscall emulation mode (SE mode). There are varying levels of support for executing Alpha, ARM,
MIPS, Power, SPARC, RISC-V, and 64 bit x86 binaries on CPU models including two simple single
CPI models, an out of order model, and an in order pipelined model. A memory system can be flexibly
built out of caches and crossbars or the Ruby simulator which provides even more flexible memory
system modelling.

There are many components and features not mentioned here, but from just this partial list it should be
obvious that gem5 is a sophisticated and capable simulation platform. Even with all gem5 can do today,
active development continues through the support of individuals and some companies, and new
features are added and existing features improved on a regular basis.

1.3 Benchmarks Tests

We use two classes of most common sorting algorithms to compare benchmarks results. The
0O(n2) complexity Bubble, Insertion, Selection sorts, and the O(n log n) complexity Heap, Merge and
Quick sorts. Also, we test some non-sorting algorithms like prime numbers finder, matrix power
normalization, eight-queens chess problem, duplicated random numbers puzzle and a recursive
iteration problem solver. All this tests are stored in $VIPPE_HOME/examples/benchmarks directory.

Simulations were executed on a virtual machine running Ubuntu 18.04. The host machine runs on an
Intel Core i5-8500 3GHz with 16GB RAM.

VIPPE vs GEM5

2 ARM Benchmarks

2.1 ARM Simulated Model

ISA ARM v7-a
CPU Cortex - a8
CPU frequency 1 GHz
Num. of cores 1
Main memory size 500 MB
L1 data cache size 32 kB
L1 instruction cache size 32 kB

Table 1. Simulated system parameters

2.2 About Gemb5 Test for ARM

In order to use Gemb in terms of performance assessment, we use the OPT binary provided.
This binary is built with most optimizations on (e.g., -02), but with debug symbols included. This
binary is much faster than debug, but still contains enough debug information to be able to debug most
problems. As we test a binary file, gem5 will simulate user space only program where system services
are provided directly by the simulator in syscall emulation mode (SE mode).

The test will be performance under ARM architecture simulation. Overtime ARM has become the
industry standard for low-power processing and driven innovation throughout the industry. The result
today is easily seen in the billions of ARM-powered products that service nearly every facet of the
industry.

The binary file we will simulate is previously cross compiled with Clang 3.5 with target armv7-linux-
gnueabihf and statically linked as Gem5 simulator pre-requisite.

For instance, in bubbleSort example, we get gem5 input binary typing in terminal:

» clang++ -Wall --target=arm-arm-none-eabi -march=armv7-a -m32 -fPIC -02 -static
bubbleSort.cpp -0 bubbleSort.arm

A rapid sight of BubbleSort.arm, typing < file Bubble.arm > in linux console:
» file Bubble.arm

ELF 32-bit LSB executable, ARM, EABI5 ver.1 (GNU/Linux), statically linked, for GNU/Linux 3.2.0

VIPPE vs GEM5

From <GEMD5 INSTALL DIR>/examples, we can run gem5 simulation with this:
» ../build/ARM/gemb5.opt ../configs/example/se.py --cpu-type=03_ARM_v7a_3 --num-cpus=1 --
cpu-clock=1GHz --mem-type=SimpleMemory --mem-size=512MB --caches --

cacheline_size=32 --11d_size=32kB --l1i_size=32kB --l1i_assoc=1 --l1d_assoc=1 -c
bubbleSort.arm

2.3 About VIPPE Test for ARM
To see a detailed explanation of VIPPE usage, please read the VIPPE manual. For this
benchmarks, we’ll just use a simple usage way:

» vippe-llvm++ [-O2] --vippe-verbose --vippe-asm --vippe-cpu=armv7a example.cpp -0
example.o

» clang++ [LINKER_FLAGS] example.o -0 example.x [INCLUDES] [LIBS]

> .Jexample.x

2.4 Sorting Benchmarks

Here we use two classes of most common sorting algorithms to compare benchmarks results.
The O(n2) complexity Bubble, Insertion, Selection sorts, and the O(n log n) complexity Heap, Merge
and Quick sorts.

Host Elapsed Time (Gem5 sec. / VIPPE sec.)

Bubble Insertion Merge Selection

Gemb5 Relative Time

VIPPE vs GEM5

Simulated Time (uS)

Insertion Merge Selection

* Gem5 ~ VIPPE

Simulated Instructions

7.000.000
6.000.000
5.000.000
4.000.000
3.000.000
2.000.000

1.000.000

Insertion Selection

* Gem5 ¥ VIPPE

VIPPE vs GEM5

6.000.000

5.000.000

4.000.000

3.000.000

2.000.000

1.000.000

20.000.000

18.000.000

16.000.000

14.000.000

12.000.000

10.000.000

8.000.000

6.000.000

4.000.000

2.000.000

0

Bubble

Bubble

Simulated Cycles

Insertion

* Gem5 ~ VIPPE

Memory Energy Consumption (nJ)

Insertion

¥ Gem5 ~ VIPPE

Selection

Selection

VIPPE vs GEM5

ICache Hits

6.000.000
5.000.000
4.000.000
3.000.000
2.000.000

1.000.000

Insertion Selection

* Gem5 ~ VIPPE

ICache Misses

Bubble Insertion Merge Selection

¥ Gem5 ~ VIPPE

2.500.000

2.000.000

1.500.000

1.000.000

500.000

VIPPE vs GEM5

Bubble

DCache Hits

Insertion

¥ Gem5

* VIPPE

DCache Misses

Insertion

¥ Gem5

* VIPPE

Merge

Selection

Selection

10

VIPPE vs GEM5

2.5 Complex Algorithms Benchmarks

For benchmarking we use SingleSource workloads from the LLVM test-suite and Computer
Language Benchmark Game Project. The algorithms used are described as follows.

nSieveBits — Fast prime number generator with segmented Sieve of Eratosthenes. The Sieve of
Eratosthenes is a standard benchmark used to determine the relative speed of different computers or,
the efficiency of the code generated for the same computer by different compilers. Find primes numbers
from 0 to 409600 in this test.

Spectral Normalization — The Von Mises iteration, is a very simple algorithm, but it may converge
slowly. The most time-consuming operation of the algorithm is the multiplication of 150 ranged matrix
A by a vector, so it is effective for a very large sparse matrix with appropriate implementation.

Al =/ Amax (A" A) = Ommax (A)

Queens — Find solutions to the Eight-Queens chess problem. The program finds all the possible ways
that N (11 for this test) queens can be placed on an NxN chessboard so that the queens cannot capture
one another, so no rank, file or diagonal is occupied by more than one queen.

Puzzle — Find duplicate numbers stored in an array, previously filled with runtime generated random
numbers. For this test we use an array with length 5000.

Recursive — Recursive algorithm to calculate 3 simple numeric functions: Ackermann, Fibonacci and
Tak. For this benchmark, the Fibonacci and Tak implementations provide separate functions, one for
integer calculation and one for double calculation. So, there is a function that uses integer calculation
with integer parameters and other function uses double calculation with double parameters.

Host Elapsed Time (Gem5 sec. / VIPPE sec.)

N-Sieve Bits Puzzle Queens Recursive Spectral

Gemb5 Relative Time

11

VIPPE vs GEM5

Simulated Time (uS)

N-Sieve Bits Queens Recursive Spectral

* Gem5 ~ VIPPE

Simulated Instructions

30.000.000
25.000.000
20.000.000
15.000.000
10.000.000

5.000.000

N-Sieve Bits Puzzle Queens Recursive Spectral

¥ Gem5 ¥ VIPPE

VIPPE vs GEM5

Simulated Cycles

35.000.000
30.000.000
25.000.000
20.000.000
15.000.000
10.000.000

5.000.000

N-Sieve Bits Puzzle Queens Recursive

* Gem5 ~ VIPPE

Memory Energy Consumption (nlJ)

120.000.000

100.000.000

80.000.000

60.000.000

40.000.000

20.000.000

N-Sieve Bits Puzzle Queens Recursive

¥ Gem5 ¥ VIPPE

Spectral

Spectral

VIPPE vs GEM5

ICache Hits

30.000.000
25.000.000
20.000.000
15.000.000
10.000.000

5.000.000

N-Sieve Bits Queens Recursive Spectral

* Gem5 ~ VIPPE

ICache Misses

N-Sieve Bits Puzzle Queens Recursive Spectral

* Gem5 ¥ VIPPE

14

VIPPE vs GEM5

DCache Hits
9.000.000
8.000.000
7.000.000
6.000.000
5.000.000
4.000.000
3.000.000
2.000.000
1.000.000

0 = = L.
N-Sieve Bits Queens Recursive Spectral

* Gem5 ~ VIPPE

DCache Misses

N-Sieve Bits Puzzle Queens Recursive Spectral

¥ Gem5 ~ VIPPE

15

VIPPE vs GEM5

3 RISC-V Benchmarks [TO-DQO]
3.1 RISC-V Simulated Model

ISA

CPU

CPU frequency
Num. of cores
Main memory size

L1 data cache size

L1 instruction cache size

RISC-V
Generic
1 GHz
1
500 MB
32kB

32 kB

Table 1. Simulated system parameters

3.2 About Gemb5 Test for RISC-V

RISC-V was not supported by Clang until its version 9 released at 19 September 2019. So we
can’t use clang 3.5 to cross-compile source files as we did for ARM. In order to cross-compile for
RISC-V platform, firstable we’ll need to install the RISC-V open source GNU Toolchain.

The binary file we will simulate is previously cross-compiled with riscv32-unknown-elf-gcc and

statically linked as Gem5 simulator pre-requisite.

For instance, in bubbleSort example, we get gem5 input binary typing in terminal:

> riscv32-unknown-elf-gcc bubbleSort.cpp -0 bubbleSort.riscv -static -O2 -fPIC —Wall

A rapid sight of BubbleSort.riscv, typing in linux terminal:

> file Bubble.riscv

ELF 32-bit LSB executable, UCB RISC-V, version 1 (SYSV), statically linked, not stripped

From <GEM5 INSTALL DIR>/examples, we can run gem5 simulation with this:

» ../build/RISCV/gemb5.opt ../configs/example/se.py --cpu-type=DerivO3_CPU --num-cpus=1 --

cpu-clock=1GHz --mem-type=SimpleMemory

--mem-size=512MB --caches --

cacheline_size=32 --11d_size=32kB --I1i_size=32kB --l1i_assoc=1 --l1d_assoc=1 -c

bubbleSort.riscv

16

VIPPE vs GEM5
3.3 About VIPPE Test for RISC-V

To see a detailed explanation of VIPPE usage, please read the VIPPE manual. For this
benchmarks, we’ll just use a simple usage way:

» vippe-llvm++ [-O2] --vippe-verbose --vippe-asm --vippe-cpu=riscv example.cpp -0 example.o
» clang++ [LINKER_FLAGS] example.o -0 example.x [INCLUDES] [LIBS]

» .Jexample.x

3.4 Sorting Benchmarks

Here we use two classes of most common sorting algorithms to compare benchmarks results.
The O(n2) complexity Bubble, Insertion, Selection sorts, and the O(n log n) complexity Heap, Merge
and Quick sorts.

Host Elapsed Time (Gem5 sec. / VIPPE sec.)

Bubble Insertion Merge Selection

Gemb5 Relative Time

17

VIPPE vs GEM5

Simulated Time (uS)

Insertion Merge Selection

* Gem5 ~ VIPPE

Simulated Instructions

10.000.000
9.000.000
8.000.000
7.000.000
6.000.000
5.000.000
4.000.000
3.000.000
2.000.000
1.000.000

0

Insertion Selection

* Gem5 ¥ VIPPE

VIPPE vs GEM5

Simulated Cycles
20.000.000
18.000.000
16.000.000
14.000.000
12.000.000
10.000.000
8.000.000
6.000.000
4.000.000

2.000.000

(0]
Bubble Insertion

* Gem5 ~ VIPPE

Memory Energy Consumption (nlJ)

Insertion Merge

* Gem5 ~ VIPPE

Selection

Selection

VIPPE vs GEM5

ICache Hits

10.000.000
9.000.000
8.000.000
7.000.000
6.000.000
5.000.000
4.000.000
3.000.000
2.000.000
1.000.000

0]
Bubble Insertion Selection

* Gem5 ~ VIPPE

ICache Misses

Insertion Merge Selection

¥ Gem5 ~ VIPPE

20

3.500.000

3.000.000

2.500.000

2.000.000

1.500.000

1.000.000

500.000

VIPPE vs GEM5

Bubble

DCache Hits

Insertion

* Gem5

* VIPPE

DCache Misses

Insertion

¥ Gemb5

* VIPPE

Merge

Selection

Selection

21

VIPPE vs GEM5
3.5 Complex Algorithms Benchmarks [TO-DO]

For benchmarking we use SingleSource workloads from the LLVM test-suite and Computer
Language Benchmark Game Project.

Host Elapsed Time (Gem5 sec. / VIPPE sec.)

N-Sieve Bits Puzzle Queens Recursive Spectral

Gemb5 Relative Time

22

VIPPE vs GEM5

Simulated Time (uS)

N-Sieve Bits Puzzle Queens Recursive

* Gem5 ~ VIPPE

Simulated Instructions

N-Sieve Bits Puzzle Queens Recursive

¥ Gem5 ~ VIPPE

Spectral

Spectral

VIPPE vs GEM5

Simulated Cycles

N-Sieve Bits Puzzle Queens Recursive Spectral

* Gem5 ~ VIPPE

Memory Energy Consumption (nlJ)

N-Sieve Bits Queens Recursive Spectral

* Gem5 ~ VIPPE

VIPPE vs GEM5

ICache Hits

N-Sieve Bits Puzzle Queens Recursive Spectral

* Gem5 ~ VIPPE

ICache Misses

N-Sieve Bits Puzzle Queens Recursive Spectral

¥ Gem5 ~ VIPPE

VIPPE vs GEM5

DCache Hits

N-Sieve Bits Puzzle Queens Recursive Spectral

* Gem5 ~ VIPPE

DCache Misses

Insertion Merge Selection

* Gem5 ~ VIPPE

VIPPE vs GEM5

3 Conclusions

Gemb is the most full-featured architecture simulator. It leverages execute-at-execute semantics

for high-fidelity cycle-by-cycle simulation. But it’s also true there are some points that makes it
absolutely hostile to new users, as the gem5 developers seems to do not think of the user first.

There’s no well-defined static APl and the interface to different modules is constantly changing.

On-line documentation is incomplete, mostly outdated, and it contains a lot of broken resource
links and doc pages.

Besides it is an incredibly flexible configuration system, this process are confusing, and mostly
inconsistent. There are many features that users depend on that are not covered by the
documentation.

Understanding of different parts of C++ code simulator infrastructure and python modelling are
tedious and very frustrating.

Running this benchmarking research | found a lot of incoherence results, as thousands of
initializing and finishing instructions blocks added to user code that originally didn’t existed.

Debugging is unnecessary difficult, inaccessible for new users and very slow down process.

Lack of new-user support in general.

VIPPE is a simulation and performance estimation tool for research field, far away from

commercial purposes. It provides a clearly and simply understanding API to users and is extremely
fast, and easy to use compared with gem>.

Despite of that it’s not a totally stable tool or deeply tested software. Actually version 3.1 has some
important developing issues yet.

Cache model is unfinished and has some incoherencies at the time of this documentation making,
as annotation tool has some bugs related to this.

There are too few CPUs and ISAs modelled cases, so is user-side work to add and configure a
specific study model if it’s not already included.

Simulators assessment radar chart

¥ Gem5 ¥ VIPPE

Accuracy

Usability /’\ Speed

Completeness Flexibility

27

[1]

[2]

[3]
[4]
[5]
[6]

[7]
[8]
9]

VIPPE vs GEM5

4 References

L. Diaz, E. Gonzélez, E. Villar, P. Sanchez. "VIPPE: Parallel simulation and performance
analysis of complex embedded systems". HIPPES4CogApp: High Performance, Predictable
Embedded Systems for Cognitive Application. 2015-01

L. Diaz, E. Gonzalez, E. Villar, P. Sdnchez. "VIPPE: Native simulation and performance analysis
framework for multi-processing embedded systems". Proceedings of the JCE-Sarteco2014.
2014-09.

QUEMU website. http://wiki.gemu.org/Main_Page. Last visit. Oct., 2014.
OVP website. http://www.ovpworld.org/. Last visit. Oct., 2014.
Coremu website. http://sourceforge.net/p/coremu/home/Home/. Last visited, August, 2015.

GESE/UC UML/MARTE modelling methodology. Available in_http://umlmarte.teisa.unican.es
(see Documentation section). Last visited June, 22th, 2016.

CONTREX Eclipse Plug-in site. http://contrep.teisa.unican.es . Last visited June, 22th, 2016.
GEMS5 Simulator Project. https://www.gem5.org/getting_started/.

Complex Benchmark Algorithms stored at https://github.com/llvm-mirror/test-
suite/tree/master/SingleSource/Benchmarks/BenchmarkGame

28

http://wiki.qemu.org/Main_Page
http://www.ovpworld.org/
http://sourceforge.net/p/coremu/home/Home/
http://umlmarte.teisa.unican.es/
http://contrep.teisa.unican.es/
https://www.gem5.org/getting_started/

